EECS 281, Week 8: Wednesday

Hash Tables

1. Describe hashing as a two-step process.

2. Consider the hash function for a string below:

int hash(const string &s) {
return toupper(s[0]l)) - 'A';

Critique this hash function, identifying and explaining its downsides.

3. Whatis a collision?

4. When can collisions occur?

5. How are collisions different from clusters?

6. What are the properties of a good hash function?

7. What is a good way to generate hash codes for a string?

8. Whatis load factor a?

Maxim Aleksa (maximal@umich.edu) 0<17 http://maximal.io/eecs281

http://maximal.io/eecs281
mailto:maximal@umich.edu

EECS 281, Week 8: Wednesday

9. What is dynamic hashing?

10. What is simple uniform hashing?

11. Suppose we use a hash function h to hash n distinct keys into an array of length m.
Assuming simple uniform hashing, what is the expected number of collisions?

12. Demonstrate what happens when we insert the keys 5, 28, 19, 15, 20, 33,12, 17, 10 into a
hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash
function be h(k) = k mod 9.

13. Suppose we have a hash table that stores integer keys and uses chaining as its collision
resolution technique. Assume that the hash code for an integer is that integer itself.

0 - 8

1 - 25
2 - 10
3 - 15

Demonstrate what happens when we insert the keys 18 and 5. Be sure to resize the hash
table by doubling the array when the load factor reaches 1.5.

14. When you modify a key that has been inserted into a hash table, will you be able to
retrieve that entry again? Explain.
A. Always
B. Sometimes
C. Never

15. When you modify a value that has been inserted into a hash table, will you be able to
retrieve that entry again? Explain.
A. Always
B. Sometimes
C. Never

Maxim Aleksa (maximal@umich.edu) 1<17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

16.(T/F) While a good hash table that contains N elements and uses separate chaining has
average-case constant time for look-up, the worst case running time for a lookup is
O(log N).

17.(T/F) std::vector can be used as a key in std: :unordered_map.

18. What do we need to do in order to use std: :unordered_map with custom types?

19.(T/F) A hash table can be used to store a dictionary in a spell-checker program.

20. Consider this definition of a hash table that stores English words and uses separate
chaining as its collision resolution technique:

struct HashTableNode {

string word;

HashTableNodex next = nullptr;
¥

class HashTable {
public:
size_t size() const;
private:
vector<HashTableNodex> slots;

Suppose that HashTable has been implemented without an instance variable to keep
track of the number elements. Complete the implementation of size method below in
such a way that it returns the number of words stored in the hash table. Feel free to add
other helper (private) functions.

size_t HashTable::size() const {

Maxim Aleksa (maximal@umich.edu) 2<17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

21. Consider the definition of a TicTacToeGame class.

class TicTacToeGame {

public:
// always 3-by-3
const size_t size = 3;
// hash code to use for std::hash()
int hashCode() const;

private:
// either 'X', '0' or ' '
char tiles[size] [sizel;
// keep track of turns
bool isXTurn = true;

Implement the hashCode methods that computes the hash code to specialize std: :hash

for the Tic-Tac-Toe game. Ensure that different board configurations have different hash
codes.

int TicTacToeGame::hashCode() const {

22. How many different configurations of the Tic-Tac-Toe board are there?

Maxim Aleksa (maximal@umich.edu) 3<17 http://maximal.io/eecs281

http://maximal.io/eecs281
mailto:maximal@umich.edu

EECS 281, Week 8: Wednesday

Tries
23.(T/F)Atrie is a binary tree.

24.To use objects of type T as keys in a trie, what property must the type T have?

25. Suppose we have a trie that stores n English words, and each of trie's nodes contains an
array of p pointers to other nodes. What is the time time complexity of looking up a word
of size k in this trie?

26.(T/F) Tries can be used to store valid words (i.e., if they are in the dictionary), but cannot
be used to store the words’ definition.

27.(T/F) Unlike hash tables, we cannot implement tries in a way to store duplicate keys.
28.(T/F) Let T be a trie that stores N strings. We can traverse T in sorted order in ©(N) time.

29.(T/F) Let T be a trie that stores strings backwards, with the top of trie corresponding to the
last, rather than the first character of the string. We have traverse T in sorted order in ©(N)
time.

30.(T/F) We can you use a trie to do a range query, e.g., to get all strings between “maxim”
and “pizza” in the dictionary in ©(N) time.

31.If we traverse the same node while searching for two strings, S1 and Sy, in a trie and that
node is at depth k in the trie (where the root is depth 0), what can we say about S; and S?

32. Describe one disadvantage of using a trie to store a dictionary of English words?

Maxim Aleksa (maximal@umich.edu) 4<17 http://maximal.io/eecs281

http://maximal.io/eecs281
mailto:maximal@umich.edu

EECS 281, Week 8: Wednesday

33. Suppose we have a trie that stores n English words, and each of trie's nodes contains an
array of p pointers to other nodes. Describe two ways to improve memory usage of this

trie.

34. Consider this definition of a case-insensitive trie for English words:

struct TrieNode {
bool isWord;
TrieNodex children([26];

¥

class Trie {
public:

size_t size() const;
private:

TrieNodex root;

Suppose that Trie has been implemented without an instance variable to keep track of
the number of words in trie. Complete the implementation of size method below in such
a way that it returns the number of words stored in the trie. Feel free to add other helper

(private) functions.

size_t Trie::size() const {

35. When should we use a hash table over a trie? Trie over a hash table?

Maxim Aleksa (maximal@umich.edu) 5<17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

Trees
36. What is the depth of a node?

37.Implement depth, a function that takes a BinaryTreeNodex and returns the depth of that
node. Assume that BinaryTreeNode struct has a parent pointer.

int depth(BinaryTreeNodex node) {

38. What is the height of a node?

39. Implement height, a function that takes a BinaryTreeNodex and returns the height of the
tree rooted that node. Assume that BinaryTreeNode struct has a left pointer and a
right pointer, and that the height of an empty tree is -1 and that the height of a tree with
one node is 0.

int height(BinaryTreeNodex node) {

40. Complete the table below with amortized time complexities and the data structure
generally used by the STL for these containers.

Operation set map unordered_set unordered_map

insert

find

remove

Data structure

Maxim Aleksa (maximal@umich.edu) 6<17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

41. The diameter of a tree is the maximum number of edges on any path connecting two
nodes of the tree. For example, here are two sample trees and their diameters. In each
case the longest path is shown in blue with stars next to all nodes in the path. Note that
there can be more than one longest path.

Ax A
/ \ / \
Bx Cx B Cx
/ \ / \ / /N
D Ex F Gx D Ex Fx*
/ / \ / N\
H Ix J Kx G Hx Ix
\ / / \
Lx Mx Jx Kx

Implement the function diameter that computes the diameter of a binary tree
represented by a pointer to an object of BinaryTreeNode class.

int diameter(BinaryTreeNodex node) {

42.(T/F) The height of a binary tree with N elements is log N.

43. What are pre-order, in-order, post-order and level-order traversals of this tree?

44.(T/F) All four traversals can be performed on all trees.
45.(T/F) For any non-empty binary tree with A leaves and B nodes of degree 2, A =B + 1.

46.(T/F) For any non-empty binary tree with A nodes and B nodes of degree 2, A =B + 1.

Maxim Aleksa (maximal@umich.edu) 7<17 http://maximal.io/eecs281

http://maximal.io/eecs281
mailto:maximal@umich.edu

EECS 281, Week 8: Wednesday

47.(T/F) In-order traversal of a binary search tree will visit the nodes in sorted order.

48. A binary tree has a post-order traversal D AB E C and an in-order traversal D EB A C.
Draw the binary tree and give its pre-order traversal.

49.(T/F) BSTs are balanced trees.

50. (T/F) Searching for an element in a binary search tree with N nodes where each node has
either 0, 1 or 2 children takes ©(N) time in the worst case.

51.(T/F) Searching for an element in a binary search tree with N nodes where each node has
either 0 or 2 children takes ©(log N) time in the worst case.

52.(T/F) In a binary search tree, all internal nodes, except the ones at the last level, have two
children.

53. What is the purpose of AVL trees?

54. Insert the following values into an empty AVL tree: 9,21, 64,12,1,19,32. Then remove 1
and 21.

55. Insert the following values into an empty AVL tree: 21,32, 64,72, 17.Then remove 21, 32,
64,72 and 17.

Maxim Aleksa (maximal@umich.edu) 8§ <17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

Graphs and Graph Algorithms

56. Describe the differences between trees and graphs.
57. Breadth-first search traversal of a graph is equivalent to which traversal of a tree?

58. Describe an algorithm for finding connected components in a graph.

Consider the following graph for the next three questions:

5y e

59.1s the graph weighted? Directed? Cyclic?

60. Give the adjacency matrix representation for the graph shown above.
61. Give the adjacency list representation for the graph shown above.

62. Give the (pre-order) DFS traversal for the graph shown above, starting at node 0.
63. Give the post-order DFS traversal for the graph shown above.

64. Give the BFS traversal for the graph shown above.

Maxim Aleksa (maximal@umich.edu) 9 <17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

Consider the following undirected graph for the next five questions:

65. Give the sequence of vertices added to the minimum spanning tree for the above graph
when running Prim’s algorithm. Start with vertex C.

66. Give the sequence of vertices added to the maximum spanning tree for the above graph
when running Prim'’s algorithm. Start with vertex C.

67. Give the sequence of edges added to the minimum spanning tree for the above graph
when running Kruskal’s algorithm.

68. Give the sequence of edges added to the maximum spanning tree for the above graph
when running Kruskal's algorithm.

69. Give the sequence of edges that would be “explored” when running Dijkstra’s algorithm
to find the shortest path from node D to node H.

70. Prim’s, Kruskal's and Dijkstra's are considered algorithms because they solve the
problems by progressively making the locally optimal choice at each stage or iteration.

71.(T/F) Dijkstra's algorithm always finds the shortest path on any graph.

72. An airline is attempting to restructure its services so that that every city in its network can
connect to any other city while minimizing the total length of its routes. What problem is
the airline trying to solve?

73. An airline’s network is set up so that most cities have flights to only a few destinations, and
a few cities are hubs, with connections to many destinations. Given this setup, which
algorithm should the airline use to create its new network?

Maxim Aleksa (maximal@umich.edu) 10<17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

74. An airline wants to generate a minimum spanning tree of its network and represents it
with the following distance matrix:
Could this be a valid solution to the airline’'s MST? Explain.

75. Suppose that a directed weighted graph is represented with an adjacency matrix.
Implement reverse, a function that would replace all edges (v, w) with (w, v).

void reverse(vector<vector<int>> &graph) {

Disjoint Sets

76. What operations can disjoint sets perform efficiently?

77.How can we represent disjoint set with an array?

78. What optimizations can we perform on disjoint sets?
79.(T/F) Disjoint sets can be used with Prim’s algorithm.

80. (T/F) Disjoint sets can be used with Kruskal’s algorithm.

Maxim Aleksa (maximal@umich.edu) 11 <17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

Algorithm Design
81.Whatdo C, L, R and S stand for in CLRS?

82.(T/F) Any divide-and-conquer algorithm is an example of a dynamic programming
algorithm.

83. (T/F) Merge sort and Quicksort are considered combine-/divide-and-conquer algorithms
rather than dynamic programming because they split the work into overlapping
subproblems.

84. Top-down dynamic programming trades for

85. Suppose you wanted to know the number of possible subsets of N tasks that cost less
than a certain amount in total. What type of algorithm should you use? Explain.

86. What would be the worst case asymptotic time complexity of the algorithm in the
previous question?

87. Suppose you wanted to know the subset of N tasks that contains the most tasks while

costing less than a certain amount. What type of algorithm should you use? Explain.

88. What would be the worst case asymptotic time complexity of the algorithm in the
previous question?

89. What is the difference between backtracking and branch-and-bound?

Maxim Aleksa (maximal@umich.edu) 12<17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

?0. Implement countDuplicates, a function that counts the total number of duplicate
numbers in a vector. For example, in a vector with elements {183, 490, 381, 281, 381, 281,
280, 281}, the total number of duplicates is 3 (2 for 281 and 1 for 381).

int countDuplicates(const vector<int> &numbers) {

?1. Write an efficient function to find the sum of contiguous elements in a subarray within a
one-dimensional vector of integers which has the largest sum. What is the time
complexity? What is the space complexity? What kind of algorithm is it?

int findMaxSubarraySum(const vector<int> &numbers) {

Maxim Aleksa (maximal@umich.edu) 13<17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

92. State the N-Queens problem. How to solve it?

93. State the Knapsack problem. Then solve it with backtracking and branch-and-bound.

94. Implement isSubsetSum, a function that solves the Subset Sum problem: given a set of n
integers S and a value W, determine if there is a subset of integers that sum to W.

bool isSubsetSum(const vector<int> &numbers, int sum) {

Maxim Aleksa (maximal@umich.edu) 14 <17 http://maximal.io/eecs281

http://maximal.io/eecs281
mailto:maximal@umich.edu

EECS 281, Week 8: Wednesday

95. Given a text and a wildcard pattern, implement wildcard pattern matching algorithm that
finds if wildcard pattern is matched with text. The matching should cover the entire text
(not partial text). The wildcard pattern can include the characters ? (matches any single
character) and * (matches any sequence of characters, including the empty sequence).
Text = "baaabab",

Pattern = “skkxkbaxkkxkab'", output : true
Pattern = "baaa?ab", output : true
Pattern = "baxa?", output : true

Pattern = "axab", output : false

int match(const string &text, const string &pattern) {

Maxim Aleksa (maximal@umich.edu) 15 <17 http://maximal.io/eecs281

mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 8: Wednesday

?6. Given a weighted graph (whose edges can have negative weights) represented with an
adjacency matrix, find the lengths of the shortest paths between all pairs of vertices. Print
the lengths of all shortest paths at the end of the function.

Hint: this is Floyd-Warshall algorithm.

void shortestPaths(const vector<vector<int>> &graph) {

Maxim Aleksa (maximal@umich.edu) 16 <17 http://maximal.io/eecs281

http://maximal.io/eecs281
mailto:maximal@umich.edu

