Week 7: Wednesday

CECS 287

MAXIM ALEKSA maximal. 10

http://maximal.io

Agenda

Algorithm Design
Brute force

Greedy

Divide and conqguer
Backtracking
Branch and Bound

Dynamic programming

Detecting Cycles

Detecting cycles

Given a directed graph represented with an adjacency matrix,
determine if the graph has a cycle.

isCyclic(< < >> &graph) ;

(B)—()—(() —(o)—(*)
Lo s

Detecting cycles

isCyclic(< < >> &graph) A
< > isVisited(graph. OF) ;
< > isOnCurrentPath(graph. (),) ;
(i =0; i < graph. (); i += 1) {

(dfsVisit(i, graph, isVisited, isOnCurrentPath)) {

4

Detecting cycles

dfsVisit(vertexIndex, < < >> &graph,
< > &isVisited, < > &isOnCurrentPath) {
('isVisited[1) 1
isVisited|] = ;
isOnCurrentPath|] = ;
(adjacentIndex = 0; adjacentIndex < graph. (); adjacentIndex += 1) {
(graphl][1) <
('isVisited]| 1 &&
dfsVisit(adjacentIndex, graph, isVisited, isOnCurrentPath)) A
I3 (isOnCurrentPath[1) 1
I3

F
¥
isOnCurrentPath]|

’

| S |
[l
-

Detecting cycles

bool dfsVisit(size_ t vertexIndex, const vector<vector<bool>> &graph,
vector<bool> &isVisited, vector<bool> &isOnCurrentPath) {
(!'isVisited[vertexIndex]) {
isVisited[vertexIndex] = true;
1sOnCurrentPath[vertexIndex] true;

~(size t adjacentIndex = 0; adjacentIndex < graph.size(); adjacentIndex += 1) A
(graph[vertexIndex] [adjacentIndex]) {

(!lisVisited[adjacentIndex] && kﬁﬁﬁ'Gkai e @
dfsvlslt(adjacentlndex, graph, 1sV151ted, isOnCurrentPath)) {

} se i (1sOnCurrentPath[adjacentlndex]) { VuS:“}PA . OI\CU\\’VQJ(Q PQ}H
v THIS IS A CRCCe—
s
s
s

isOnCurrentPath[vertexIndex] = false:

Dijkstra’s Algorithm

m"v‘\ /W‘M P(\m 5
MIV\ (o) Sfo.xmmg ‘reo Keuekats
can hove 03("05 @'a@‘b\/\%‘\fi\in_;o«&

Dijkstra’s Algorithm

Visit vertices in order of best-known distance from source,
relaxing each edge from the visited vertex.

Relaxing an edge means to add to SPT if better distance.

Dijkstra’s Algorithm

Visit vertices in order of best-known distance from source,

relaxing each edge from the visited vertex.
A

Relaxing an edge means to add to SPT if better distance.

ka,\ W QO\OJ\@

Dijkstra's Algorithm T o™

O-
o &
Visit vertices in order of best-known distance from source, 43
relaxing each edge from the visited vertex. &
AT S O XO- s

N
Relaxing an edge means to add to SPT if better distance. & (7
Shortest patty; tre,

Prim’s vs. Dijkstra’s

iNn order of distance
Visit order from the MST under
construction

iNn order of distance
from the source

Jdnder the metric of
the distance from the
olflelln

Jdnder the metric of

Visiting a vertex:
distance from tree

relax all edges

Prim’s vs. Dijkstra’s

Prim’s Dijkstra’s

Algoritnm Design

Algoritnm Design

Brute force

Greedy

Divide and conquer
Backtracking
Branch and Bound

Dynamic programming

Brute force

Generates every possible answer and selects only the valid ones
Usually runs in exponential time

Requires a generation of each answer such as with a
permutation-generation function or a tree-traversal function

Examples:

Pick all subsets of numbers and see which add up to a given sum
Pick all routes in the travelling salesman problem and choose the
pest.

] umich.instructure.com

Schedule

Assignments

o Tree Questions for Tree Points
rades

3 points. For each question, select all correct answers.
People
Calendar
Files

I a U-M Course Man-

Courses ager Consider the Tree Sort algorithm in which sorting is achieved by placing all elements to be sorted into

Piazza a binary search tree and then taking the in-order traversal of the tree. Which of the following

statements are true about Tree Sort?
Lecture Recordings

Autograder 1 Tree Sort performs well on input that is already in nearly sorted order.

Calendar
Autograder 2 The worst case time complexity of Tree Sort is ©(n log n).

& Gradescope Using an AVL tree (i.e. "AVL Sort") instead of a regular binary search tree improves the worst
case complexity.

Teaching Evalua-
tions
c-’ Tree Sort is stable, as long as the right policy is used for equally valued elements.
Commons Engineering Honor

Code None of the above.

@ Alternate Exam Re-
quest

Greedy

Picks the "best” next partial solution from the current partial
solution at every step, by some meaning of “best”.

Usually visits each node once (often this translates to linear
complexity, but not always).

May not always produce an optimal solution.

Examples: MST algorithms like Prim’s and Kruskal's, making
change using U.S. coins

0@_‘. M&L S‘O(b&;of\

Greedy \OCU\\L‘S

Picks the "best” next partial solution from the current partial
solution at every step, by some meaning of “best”.

Usually visits each node once (often this translates to linear
complexity, but not always).

May not always produce an optimal solution.

Examples: MST algorithms like Prim’s and Kruskal's, making

change using U.S. coins
A St

Huffman coding

ASCI

Character
A

B
C
D

Decimal
65
66
6/
68
69

Binary
1000001
1000010
1000011
1000100
1000101

Hexadecimal
41
42
43
44
45

Morse code

D> X>N A NN<TNONOONO

ABCDEFGHIJKLMNOPQRST

Prefix Property

O O OO b

S = S
=

—
—

Prefix Property

A 0 A 0

B 1 B 10
C 01 C 110
D 11 D 111

ECEABEADCAEFEEEECEADEEEEEDBAAEABDB
BAAEAAACDDCCEABEEDCDEEDEAEEEEEAEED
BCEBEEADEAEEDAEBCDEDEAEEDCEEAEEE

e[+ o[[0«

Huffman coding

Exploit redundancy and existing order inside the sequence.

Sequences with no existing redundancy or order may get
expanded.

Huffman coding

Huffman coding

class Encoder { 3o \ o\ O.

public: - g)(D‘
T C S— N
private: _}Q\\\EZ—”_
// probabilites for each supported character, e.g. 'a'—>0.2, 'b'—>0.1
unordered_map<char, double> probabilities;
// encodlngs for each supported character, e.g. a —>0", 'c —>"10"
unordered_map<char, string> encodings;
8/ AT

vold setEncodings():

QA ,lpc
e
(1 Cp L 55 |

Huffman coding

Encoder::setEncodings() {
cmp = [] (a, b) {
probabilities[al < probabilities[b];

s
< , < >, (cmp)> characters(cmp);
(it = probabilities. (); it !'= probabilities. (): ++it) {
character = 1t—> ;
characters. (character):
+
prefix = ;
(!'characters. ()) {
character = characters. OF
characters. OF
encoding = prefix + '1';
encodings [] = encoding;
prefix += '0°';
s

=

.
\J L) 1 L]

\
01d Encodé?f—;;;Ebcodings() {

Jffman coding

NSk -
~C 3MQ M W

VCQiBQquzi_

auto cmp = [this](char a, char b) {
eturn probabilities[al < probabilities

ki

prlorlty queue< har, deque<char>, decltype(cmp)> characters(cmp);
(auto = probabilities. begln(), it != probabilities.end(); ++it) {
char character = 1t->first;
characters.push(character); PuC\ Q_l(C{!\Q}(S' ')(/) PLQ

s

strlng prefix = "',

' ('characters.empty()) { 1
;hj« character = characters.top();
characters.pop(); 1
string encoding = prefix + '1'; {&_
encodings|[character] = encoding; ()
prefix »=z7_£,;

\ 00 O

Divide and Conqguer

Divides a problem into multiple non-overlapping subproblems
to construct a solution.

Typically only top-down and recursive.

Subproblems constructed by partitioning the current problem,
then the subproblems are solved and joined together somenhow.

Examples: quicksort, merge sort.

Backtracking

Find a solution satistying a constraint.

For efficiency, will usually generate only possible continuations
of the solution.

Examples: n-queens, class scheduling.

Backtracking "

Se cond ul
Find a solution satistying a constraint.

For efficiency, will usually generate only possible continuations
of the solution. ﬂ

Examples: n-queens, class scheduling.
SU\C&O\QU\ bmj‘e QDI(CQ

QXA 62){1 o\ (FOS'S‘ Famfcxj’n‘ggl l'
‘Hhaun Theck solcfens

(BQC)‘C'(‘VQQ{,Q 'q
0Com5+r;2rt-s (‘an"“ @ Vefeai“ﬁ @}—ﬁ oLVHC]G(e

¢ Solve w/ soluhion tree

Branch-and-Bound

Find the best solution possible.
Branch pruning. Bound estimation.

Any number of solutions may be ‘valid’solutions but only a few
will be optimal.

Examples: travelling salesman problem, chess engine Al.

Dynamic Programming

Divides a problem into multiple overlapping subproblems ana
builds a solution (either Bottom-up or top-down).
S < """ \—

Only ever needs to calculate the solution to a given solution

once
%

Often involves some kind of cache or table to store intermediate
solutions. = = == B)

Examples: Fibonacci, text-justification, knapsack problem.

Dynamic Programming

Divides a problem into multiple overlapping subproblems and
builds a solution (either bottom-up or top-down).

Only ever needs to calculate the solution to a given solution
once.

Often involves some kind of cache or table to store intermediate
solutions.

Fxamples: Fibonacci, text-justification, knapsack problem.

Knapsack problem,.

wWe gk
COs¥F (of'\

List of n items, each with size s; and va\ue V..

Knapsack of size S. @

Choose subset of items of maxwygx)tota\ value subJec:t to total

size < S. Po—t
J
— | % & @ O 5 @

Algoritnm Design

Brute force

Greedy

Divide and conquer
Backtracking
Branch and Bound

Dynamic programming

FiboNacci sequence

fib(n) = fib(n - 1) + fib(n - 2)
fib(@) = 0, fib(1l) =1

Knapsack proplem

List of n items, each with size s;and value v
Knapsack of size S.

Choose subset of items of maximum total value subject to total
Size < 5.

Knapsack proplem

Subproblem: what is the value of items starting at index / ?

Recurrence;
K(i) = max(K(i + 1), vi + K(i + 1) if s; = S)

Better recurrence:
K(i, X) = max(K(i + 1, X),
vi + K(1 + 1, X - sij) 1f si = X)
Base case:
K(n, X) = 0

Knapsack problem

Subproblem: what is the value of items starting at indexj? L—Y%

ﬁsg

Recurrence: <lew't enessé jioove Al
K(i) = max(K(i + 1), vi + K(1 + 1) if s; = S)

Better recurrence; «loa 't /uo0so < (O,) =man (K (1 S),

K(i, X) = max(K(1i + 1, X), solution v +K“55)
remaiing 7 vi + K(i + 1, X - s1) if si = %))

/
’. \ 'l — " X

Base case:
K(n, X) =0 | | & |
C oltey m ifemS no Aems remarn — Tofal valas isf

Pseudopolynomial Time

Polynomial in the problem size AND the numbers in input.

Polynomial = good

Pseudopolynomial = okay

Supset Sum

Given a set of n integers S and a value W, determine if there is a
that sum to W.

wWinning games

A simple card game

Deal n cards. Each player picks a card from the left end or from
the right end until no cards remain. The player whose cards sum
Up to the highest number wins.

SO ¥ &
v
A M A

> € ¢

S (-();53 - Max (VC?]-% m"tV\(S(l"F&)p, S(}./.))'y\\
VEPEmin(S (s, ')—“)S(i)))‘\\)}

A simple card game

Deal n cards. Each player picks a card from the left end or from
the right end until no cards remain. The player whose cards sum
up to the highest number wins.

Text justification

HQJ{O lJJOVIdf
M T ouw

