
Week 7: Wednesday
EECS 281

 MAXIM ALEKSA maximal.io

http://maximal.io

Agenda
Algorithm Design

Brute force

Greedy

Divide and conquer

Backtracking

Branch and Bound

Dynamic programming

Detecting Cycles

Detecting cycles
Given a directed graph represented with an adjacency matrix,
determine if the graph has a cycle.

bool isCyclic(const vector<vector<bool>> &graph);

A C E

B D

G

F

A C E

B D

G

F

Detecting cycles
bool isCyclic(const vector<vector<bool>> &graph) {
 vector<bool> isVisited(graph.size(), false);
 vector<bool> isOnCurrentPath(graph.size(), false);

 for (size_t i = 0; i < graph.size(); i += 1) {
 if (dfsVisit(i, graph, isVisited, isOnCurrentPath)) {
 return true;
 }
 }

 return false;
}

Detecting cycles
bool dfsVisit(size_t vertexIndex, const vector<vector<bool>> &graph,
 vector<bool> &isVisited, vector<bool> &isOnCurrentPath) {
 if (!isVisited[vertexIndex]) {
 isVisited[vertexIndex] = true;
 isOnCurrentPath[vertexIndex] = true;

 for (size_t adjacentIndex = 0; adjacentIndex < graph.size(); adjacentIndex += 1) {
 if (graph[vertexIndex][adjacentIndex]) {
 if (!isVisited[adjacentIndex] &&
 dfsVisit(adjacentIndex, graph, isVisited, isOnCurrentPath)) {
 return true;
 } else if (isOnCurrentPath[adjacentIndex]) {
 return true;
 }
 }
 }
 }
 isOnCurrentPath[vertexIndex] = false;
 return false;
}

Dijkstra’s Algorithm

Dijkstra’s Algorithm
Visit vertices in order of best-known distance from source,
relaxing each edge from the visited vertex.

Relaxing an edge means to add to SPT if better distance.

Prim’s vs. Dijkstra’s

Prim’s Dijkstra’s

Visit order
in order of distance
from the MST under

construction

in order of distance
from the source

Visiting a vertex:
relax all edges

under the metric of
distance from tree

under the metric of
the distance from the

origin

Prim’s vs. Dijkstra’s

Prim’s Dijkstra’s

Algorithm Design

Algorithm Design
Brute force

Greedy

Divide and conquer

Backtracking

Branch and Bound

Dynamic programming

Brute force
Generates every possible answer and selects only the valid ones

Usually runs in exponential time

Requires a generation of each answer such as with a
permutation-generation function or a tree-traversal function

Examples: 
Pick all subsets of numbers and see which add up to a given sum 
Pick all routes in the travelling salesman problem and choose the
best.

Greedy
Picks the “best” next partial solution from the current partial
solution at every step, by some meaning of “best”.

Usually visits each node once (often this translates to linear
complexity, but not always).

May not always produce an optimal solution.

Examples: MST algorithms like Prim’s and Kruskal’s, making
change using U.S. coins

Huffman coding

ASCII

Character Decimal Binary Hexadecimal

A 65 1000001 41

B 66 1000010 42

C 67 1000011 43

D 68 1000100 44

E 69 1000101 45

Morse code

Prefix Property

A 0

B 1

C 01

D 11

Prefix Property

A 0

B 1

C 01

D 11

A 0

B 10

C 110

D 111

ECEABEADCAEFEEEECEADEEEEEDBAAEABDB
BAAEAAACDDCCEABEEDCDEEDEAEEEEEAEED
BCEBEEADEAEEDAEBCDEDEAEEDCEEAEEE

character A B C D E

frequency 0.2 0.1 0.1 0.15 0.45

0.150.10.1 0.450.2

AB C D E

0.2

0 1

0.35

0 1

0.55

10

1.0

10

Huffman coding
Exploit redundancy and existing order inside the sequence.

Sequences with no existing redundancy or order may get
expanded.

Huffman coding
class Encoder {
public:
 // ...
private:
 // probabilites for each supported character, e.g. 'a'->0.2, 'b'->0.1
 unordered_map<char, double> probabilities;
 // encodings for each supported character, e.g. 'a'->"0", 'c'->"10"
 unordered_map<char, string> encodings;
 // ...
 void setEncodings();
};

Huffman coding
void Encoder::setEncodings() {
 auto cmp = [this](char a, char b) {
 return probabilities[a] < probabilities[b];
 };
 priority_queue<char, deque<char>, decltype(cmp)> characters(cmp);
 for (auto it = probabilities.begin(); it != probabilities.end(); ++it) {
 char character = it->first;
 characters.push(character);
 }
 string prefix = "";
 while (!characters.empty()) {
 char character = characters.top();
 characters.pop();
 string encoding = prefix + '1';
 encodings[character] = encoding;
 prefix += '0';
 }
}

Divide and Conquer
Divides a problem into multiple non-overlapping subproblems
to construct a solution.

Typically only top-down and recursive.

Subproblems constructed by partitioning the current problem,
then the subproblems are solved and joined together somehow.

Examples: quicksort, merge sort.

Backtracking
Find a solution satisfying a constraint.

For efficiency, will usually generate only possible continuations
of the solution.

Examples: n-queens, class scheduling.

Branch-and-Bound
Find the best solution possible.

Branch pruning. Bound estimation.

Any number of solutions may be ‘valid’ solutions but only a few
will be optimal.

Examples: travelling salesman problem, chess engine AI.

Dynamic Programming
Divides a problem into multiple overlapping subproblems and
builds a solution (either bottom-up or top-down).

Only ever needs to calculate the solution to a given solution
once.

Often involves some kind of cache or table to store intermediate
solutions.

Examples: Fibonacci, text-justification, knapsack problem.

Algorithm Design
Brute force

Greedy

Divide and conquer

Backtracking

Branch and Bound

Dynamic programming

Fibonacci sequence
fib(n) = fib(n - 1) + fib(n - 2)

fib(0) = 0, fib(1) = 1

Knapsack problem
List of n items, each with size si and value vi.

Knapsack of size S.

Choose subset of items of maximum total value subject to total
size ≤ S.

Knapsack problem
Subproblem: what is the value of items starting at index i ?

Recurrence: 
K(i) = max(K(i + 1), vi + K(i + 1) if si ≤ S)

Better recurrence: 
K(i, X) = max(K(i + 1, X), 
 vi + K(i + 1, X - si) if si ≤ X)

Base case: 
K(n, X) = 0

Pseudopolynomial Time
Polynomial in the problem size AND the numbers in input.

Polynomial = good

Exponential = bad

Pseudopolynomial = okay

Subset Sum
Given a set of n integers S and a value W, determine if there is a
subset of integers that sum to W.

Winning games

A simple card game
Deal n cards. Each player picks a card from the left end or from
the right end until no cards remain. The player whose cards sum
up to the highest number wins.

