
Week 7: Monday
EECS 281

 MAXIM ALEKSA maximal.io

http://maximal.io

Agenda
Project 3 postmortem

Graphs

Graph Traversals

Minimum Spanning Tree

Algorithm Design

Brute force

Greedy

Swift

Project 3

Project 3
0 10 12 14"bear"

"cat" 2 10 12 15 17 21 22

"dog"

"wolverine"

"zebra"

2 10 12 17 18 24 35 36 37

3 7 8

2 5 6 7 10 12

Project 3
k cat dog zebra

2 10 12

2 10 12 0 1 6 10 36 37 28 29 31

Excerpt list

2 10 12

Project 3
k cat dog zebra

2 10 12

2 10 12 0 1 6 10 36 37 28 29 31 2 10 12

Excerpt list

Project 3

2 10 12

0 1 6 10 36 37

28 29 31

2 10 12

…

0

1

2

3

…

Lab 8: Mispelings

Graphs

Graph traversal
Pre-order depth-first traversal

Post-order depth-first traversal

Breadth-first traversal

Graph problems
s-t Path. Is there a path between vertices s and t?

Shortest s-t Path. What is the shortest path between vertices
s and t?

Cycle. Does the graph contain any cycles?

Euler Tour. Is there a cycle that uses every edge exactly once?

Hamilton Tour. Is there a cycle that uses every vertex exactly
once?

Graph problems
Connectivity. Is the graph connected, i.e. is there a path
between all vertex pairs?

Biconnectivity. Is there a vertex whose removal disconnects the
graph?

Planarity. Can you draw the graph on a piece of paper with no
crossing edges?

Isomorphism. Are two graphs isomorphic (the same graph in
disguise).

Graph problems
Shortest path.

Minimum spanning tree.

Minimum spanning tree
Given an undirected graph G, a spanning tree T is 
a subgraph of G, where T:

• Is connected.

• Is acyclic.

• Includes all of the vertices.

A minimum spanning tree is a spanning tree of
minimum total weight.

Minimum spanning tree

Prim’s algorithm Kruskal’s algorithm

Prim’s Algorithm
Start from some arbitrary start vertex.

Repeatedly add the vertex closest to the MST under
construction.

Repeat until V – 1 edges.

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

X, ∞

X, ∞

X, ∞

X, ∞

X, ∞

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

X, ∞

X, ∞

X, ∞

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

X, ∞

X, ∞

X, ∞

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

F, 1

X, ∞

F, 4

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

F, 1

X, ∞

F, 4

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

F, 1

C, 3

F, 4

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

F, 1

C, 3

F, 4

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

F, 1

C, 3

D, 2

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

F, 1

C, 3

D, 2

A, 2

Prim’s Algorithm
Repeatedly add the vertex
closest to the MST under
construction.

distances

parents

partOfTree
A

B

C

D

E

F

4

2

5

6

1

4

2

3

X, 0

A, 4

F, 1

C, 3

D, 2

A, 2

Kruskal’s Algorithm
Consider edges in increasing order of weight. (Sort edges.)

For each edge, add edge to MST unless doing so creates a
cycle.

Repeat until V – 1 edges.

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
A-B, 4 C-D, 3

A-F, 2 C-F, 1

B-C, 6 D-E, 2

B-F, 5 E-F, 4

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Kruskal’s Algorithm
Sort edges by weight.

For each edge, add edge
to MST unless doing so
creates a cycle.

A

B

C

D

E

F

4

2

5

6

1

4

2

3

Edges
C-F, 1 A-B, 4

A-F, 2 E-F, 4

D-E, 2 B-F, 5

C-D, 3 B-C, 6

Prim’s vs. Kruskal’s

Prim’s Kruskal’s

Algorithm Design

Algorithm Design
Brute force

Greedy

Divide and conquer

Backtracking

Branch and Bound

Dynamic programming

Brute force
Generates every possible answer and selects only the valid ones

Usually runs in exponential time

Requires a generation of each answer such as with a
permutation-generation function or a tree-traversal function

Examples: 
Pick all subsets of numbers and see which add up to a given sum 
Pick all routes in the travelling salesman problem and choose the
best.

Power function

Greedy
Picks the “best” next partial solution from the current partial
solution at every step, by some meaning of “best”.

Usually visits each node once (often this translates to linear
complexity, but not always).

May not always produce an optimal solution.

Examples: MST algorithms like Prim’s and Kruskal’s, making
change using U.S. coins

Silicon Valley

http://www.hbo.com/silicon-valley

http://www.hbo.com/silicon-valley

Compression

Lossless Compression

Compression
Algorithm C

Decompression
Algorithm C-1

01010101000001010
10111010010101...

01010101000001010
10111010010101...

1001010101...1001010101...

ASCII

Character Decimal Binary Hexadecimal

A 65 1000001 41

B 66 1000010 42

C 67 1000011 43

D 68 1000100 44

E 69 1000101 45

Morse code

Prefix Property

A 0

B 1

C 01

D 11

Prefix Property

A 0

B 1

C 01

D 11

A 0

B 10

C 110

D 111

Huffman coding

ECEABEADCAEFEEEECEADEEEEEDBAAEABDB
BAAEAAACDDCCEABEEDCDEEDEAEEEEEAEED
BCEBEEADEAEEDAEBCDEDEAEEDCEEAEEE

character A B C D E

frequency 0.2 0.1 0.1 0.15 0.45

0.150.10.1 0.450.2

AB C D E

0.150.10.1 0.450.2

AB C D E

0.2

0 1

0.150.10.1 0.450.2

AB C D E

0.2

0 1

0.35

0 1

0.150.10.1 0.450.2

AB C D E

0.2

0 1

0.35

0 1

0.55

10

0.150.10.1 0.450.2

AB C D E

0.2

0 1

0.35

0 1

0.55

10

1.0

10

Huffman coding
Exploit redundancy and existing order inside the sequence.

Sequences with no existing redundancy or order may get
expanded.

SuperZip
Suppose an algorithm designer says their algorithm SuperZip
can compress any bitstream by 50%. Why is this impossible?

Things get weird
0587355292:Desktop Maxim$ zip dog.zip dog.txt
 adding: dog.txt (stored 0%)
0587355292:Desktop Maxim$ ls -l dog*
-rw-r--r-- 1 Maxim staff 7 Jun 18 12:57 dog.txt
-rw-r--r-- 1 Maxim staff 171 Jun 18 12:58 dog.zip

Q&A

