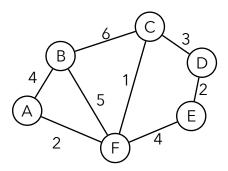
AVL Trees


Height of a node:		
In-order predecessor:		
Left rotation:		
Right rotation:		
Insert 4, 8, 15, 23, 16 and 42 in	to an AVL tree.	
Delete 8 from the AVL tree.		

Graphs

Graph: $G = (V, E)$							
Set of, a.k.a							
Set of: pairs of vertices.							
Vertices with an edge between are _	·						
Vertices or edges may have	·						
A is a sequence of vertices connected by edges.							
A is a path whose first and last vertices are the same.							
A graph with a cycle is	A graph without a cycle is						
Two vertices are if there is a path between them.							
If all vertices are connected, we say	the graph is						
Graphs Representations Adjacency matrix	Adjacency list						
Graphs Traversals							
Pre-order depth-first traversal							
Post-order depth-first traversal							
Breadth-first traversal							
Graph Problems							
Shortest path:							
Minimum spanning tree:							

Minimum Spanning Tree

Prim's Algorithm

Kruskal's Algorithm

Detecting Cycles

Given a *directed* graph represented with an adjacency matrix, determine if the graph has a cycle. Feel free to add helper functions or use an extra page if needed.

bool	isCyclic(const	vector <vector<bool>></vector<bool>	&graph)	{
What is the worst case time complexity of isCyclic in terms of $ V $ and $ E $? Explain.				

When finished, take a picture of your answers and email it to Maxim.