EECS 281, Week 6: Monday

Trees
Atree is

Ina tree, each node can have zero or more children. Each node has one parent,
except for the root, which has no parents.

A is a node with no children.
An is a node that is not a leaf.
Two nodes are if they have the same parent.

The ancestors of a node d are the nodes on the path from d to the root. The root is an
ancestor of every node in the tree.

If ais an of d,thendis a of a.

The length of a path is the number of edges in the path.

The of a node n is the length of the path from n to the root.

The depth of the root is . The depth of any node is

The of a node n is the length of the path from n to its deepest descendant.
The height of a leaf node is . The height of an internal node is
Binary Trees

A binary tree is

A common way to represent binary trees:

template <typename T>
class BinaryTreeNode {
T item;
BinaryTreeNode *parent;
BinaryTreeNode xleft;
BinaryTreeNode *right;

template <typename T>

class BinaryTree {
BinaryTreeNode<T> xroot;
int size;

Maxim Aleksa (maximal@umich.edu) 0<é6 http://maximal.io/eecs281


mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 6: Monday

Traversals

Pre-order traversal:

Post-order traversal:

In-order traversal:

Level-order traversal:

Binary Search Trees

Maxim Aleksa (maximal@umich.edu) 1<6 http://maximal.io/eecs281


mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 6: Monday

AVL Trees

Maxim Aleksa (maximal@umich.edu) 2<6 http://maximal.io/eecs281


http://maximal.io/eecs281
mailto:maximal@umich.edu

EECS 281, Week 6: Monday

Tries
Atrie is

"on "non

Draw a trie that stores the words “cat” “cats”,

"o mon

catdog”, “cheese”, “code”, "dog” and “dolphin”.

An easy way to represent binary tries:

struct TrieNode {

<SomeType> data;

TrieNode *children[ALPHABET_SIZE];
¥

class Trie {
TrieNode xroot;
int size;

How would we then represent a trie that stores the same words as above?

Complexity:

How to reduce memory used?

Maxim Aleksa (maximal@umich.edu) 3<6 http://maximal.io/eecs281


http://maximal.io/eecs281
mailto:maximal@umich.edu

EECS 281, Week 6: Monday

Tree Diameter

Consider this BinaryTreeNode class:

class BinaryTreeNode

{
public:

BinaryTreeNodex left;

BinaryTreeNodex right;

int value;

BinaryTreeNode(int n) : value(n), left(nullptr), right(nullptr) {}
b

The diameter of a tree is the maximum number of edges on any path connecting two nodes
of the tree. For example, here are two sample trees and their diameters. In each case the

longest path is shown with by circling the codes and shown in purple. Note that there can be
more than one longest path.

o (O (© > OO

Implement the function diameter that computes the diameter of a binary tree represented by
a pointer to an object of BinaryTreeNode class.

Assume that nullptr represents an empty tree or a missing child. Do not modify the
definition of BinaryTreeNode class, but you may write helper functions. Implement diameter
as efficiently as possible.

Continued on the next page.

Maxim Aleksa (maximal@umich.edu) 4<6 http://maximal.io/eecs281


mailto:maximal@umich.edu
http://maximal.io/eecs281

EECS 281, Week 6: Monday

What is the worst case time complexity of diameter? Explain.

How can you change the BinaryTreeNode class to improve the worst time complexity of
diameter?

Challenge question: In general, what is the diameter of a complete binary tree with N nodes?
Express your answer in terms of N.

When finished, take pictures of your answers on pages 4 and 5 and email them to Maxim.

Maxim Aleksa (maximal@umich.edu) 5<6 http://maximal.io/eecs281


mailto:maximal@umich.edu
http://maximal.io/eecs281

