
Week 4: Monday
EECS 281

 MAXIM ALEKSA maximal.io

http://maximal.io

Roadmap
Mon 5/22 Quicksort Section: Sorting algorithms Project 2 due

Tue 5/23 Mergesort

Wed 5/24 Midterm Exam review Section: Midterm Exam review

Thu 5/25 Midterm Exam

Fri 5/26 Lab 4 and Lab 5 due

Tue 5/30 Intro to Hashing

Wed 5/31 Hashing and Collision Resolution Section: Hashing

Thu 6/1 Tree ADT, Searching in Trees

Agenda
Disjoint sets

Queue with two stacks

FibonacciIterator

Searching 

Sorting

Bubble sort

Insertion sort

Selection sort

Merge sort

Heapsort

Quicksort

260
slides

Queue with two stacks

🙀

🐶

🐼 🐨

🐥

🐿
🐠

Queue with two stacks

🙀

🐶

🐼

🐨
🐥

🐿

🐠

Queue with two stacks

🙀

🐶

🐼

🐨
🐥

🐿

🐠 input output

Fibonacci Iterator
Fn = Fn – 1 + Fn – 1

Disjoint sets
No items are more than in one set

Universe of items: all items that can be a member of a set

Operations:
Union merges two sets into one
Find finds which set an item is in

Disjoint sets

Disjoint sets

Disjoint sets

find(Skype) → Skype
find(Tumblr) → Tumblr
find(LinkedIn) → LinkedIn

Tumblr Yahoo!Microsoft

Verizon

Skype

Nokia LinkedIn

find(Skype) → Microsoft
find(Tumblr) → Yahoo!
find(LinkedIn) → LinkedIn

Disjoint sets
Yahoo!Microsoft

VerizonNokia LinkedIn

find(Skype) → Microsoft
find(Nokia) → Microsoft
find(LinkedIn) → LinkedIn

Disjoint sets
Yahoo!Microsoft

VerizonLinkedIn

find(Skype) → Microsoft
find(Nokia) → Microsoft
find(LinkedIn) → Microsoft

Disjoint sets
Yahoo!Microsoft

VerizonLinkedIn

find(Tumblr) → Verizon
find(Yahoo!) → Verizon
find(Verizon) → Verizon

Disjoint sets
Yahoo!Microsoft Verizon

Quick Find
List-based disjoint sets

Each set references list of items in that set

Each item references the set that contains it

Find: Θ(1) time

Union: slow

Microsoft

Quick Union
Union: Θ(1) time

Find: slower

Quick Union is faster overall than Quick Find

Sets are stored as trees

Only parent references

True identity of each set is recorded at root

Microsoft

break;

Sorting

Sorting
A sort is a permutation of a sequence of elements that brings
them into order according to some total order.

A total order ≼ is…
 total x ≼ y or y ≼ x for all x, y.
 reflexive x ≼ x.
 antisymmetric x ≼ y and y ≼ x iff x = y.
 transitive x ≼ y and y ≼ z implies x ≼ z.

Alternative view point
An inversion is a pair of elements that are out of order.

0 1 1 2 3 4 8 6 9 5 7

6/55 inversions: (8,6) (8,5) (8,7) (6,5) (9,5) (9,7).

Goal of sorting: reduce the number of inversions to 0.

Why sort?
Problems become easier

Searching

Finding median

Data compression

Computer graphics

Sorting Algorithms
Bubble sort

Selection sort

Insertion sort

Heapsort

Merge sort

Quicksort

Bubble sort
Reduce the number of inversions by going through the array
and swapping adjacent elements if they are an inversion pair.

Bubble large elements up and bubble small elements down.

Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 … n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

Bubble sort
Reduce the number of inversions by going through the array
and swapping adjacent elements if they are an inversion pair.

Bubble large elements up and bubble small elements down.

Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Bubble sort
Repeat until A is sorted (no swaps in previous loop): 
 for i = 0 ... n – 2: 
 if A[i] > A[i + 1]: 
 swap A[i] > A[i + 1]

0 1 2 3 4 5 6 7

Selection sort
Find the smallest item in the unsorted part.

Swap this item to the front and “fix” it.

Repeat for unfixed items until all items are fixed.

0 1 2 3 4 5 6 7

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsortedsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsortedsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsortedsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsortedsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsortedsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsortedsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

unsortedsorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted minimum

Selection sort
Select the smallest item in the unsorted part.

Swap it to the front of the unsorted part to put it in correct position.

Repeat for all unsorted items until all items are in the sorted part.

0 1 2 3 4 5 6 7

sorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

unsortedsorted

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

Insertion sort
Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

0 1 2 3 4 5 6 7

sorted

Heapsort
Build a max-heap using bottom-up method.

S O R T E X A M P L E
0 1 2 3 4 5 6 7 8 9 10

Heapsort
Build a max-heap using bottom-up method.

S O R T E X A M P L E
0 1 2 3 4 5 6 7 8 9 10

S

O R

T E X A

M P L E

Heapsort
Build a max-heap using bottom-up method.

S O R T E X A M P L E
0 1 2 3 4 5 6 7 8 9 10

S

O R

T E X A

M P L E

Heapsort
Build a max-heap using bottom-up method.

S O R T E X A M P L E
0 1 2 3 4 5 6 7 8 9 10

S

O R

T E X A

M P L E

Heapsort
Build a max-heap using bottom-up method.

S O R T L X A M P E E
0 1 2 3 4 5 6 7 8 9 10

S

O R

T L X A

M P E E

Heapsort
Build a max-heap using bottom-up method.

S O R T L X A M P E E
0 1 2 3 4 5 6 7 8 9 10

S

O R

T L X A

M P E E

Heapsort
Build a max-heap using bottom-up method.

S O X T L R A M P E E
0 1 2 3 4 5 6 7 8 9 10

S

O X

T L R A

M P E E

Heapsort
Build a max-heap using bottom-up method.

S T X O L R A M P E E
0 1 2 3 4 5 6 7 8 9 10

S
T X

O L R A

M P E E

Heapsort
Build a max-heap using bottom-up method.

S T X P L R A M O E E
0 1 2 3 4 5 6 7 8 9 10

S
T X

P L R A

M O E E

Heapsort
Build a max-heap using bottom-up method.

X T S P L R A M O E E
0 1 2 3 4 5 6 7 8 9 10

X
T S

P L R A

M O E E

Heapsort
Build a max-heap using bottom-up method.

X T S P L R A M O E E
0 1 2 3 4 5 6 7 8 9 10

X
T S

P L R A

M O E E

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

X T S P L R A M O E E
0 1 2 3 4 5 6 7 8 9 10

X
T S

P L R A

M O E E

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

X T S P L R A M O E E
0 1 2 3 4 5 6 7 8 9 10

X
T S

P L R A

M O E E

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E T S P L R A M O E X
0 1 2 3 4 5 6 7 8 9 10

E
T S

P L R A

M O E X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

T E S P L R A M O E X
0 1 2 3 4 5 6 7 8 9 10

T
E S

P L R A

M O E X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

T P S E L R A M O E X
0 1 2 3 4 5 6 7 8 9 10

T

P S

E L R A

M O E X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

T P S O L R A M E E X
0 1 2 3 4 5 6 7 8 9 10

T

P S

O L R A

M E E X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

T P S O L R A M E E X
0 1 2 3 4 5 6 7 8 9 10

T

P S

O L R A

M E E X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E P S O L R A M E T X
0 1 2 3 4 5 6 7 8 9 10

E

P S

O L R A

M E T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

S P E O L R A M E T X
0 1 2 3 4 5 6 7 8 9 10

S

P E

O L R A

M E T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

S P R O L E A M E T X
0 1 2 3 4 5 6 7 8 9 10

S

P R

O L E A

M E T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

S P R O L E A M E T X
0 1 2 3 4 5 6 7 8 9 10

S

P R

O L E A

M E T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E P R O L E A M S T X
0 1 2 3 4 5 6 7 8 9 10

E

P R

O L E A

M S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

R P E O L E A M S T X
0 1 2 3 4 5 6 7 8 9 10

R
P E

O L E A

M S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

R P E O L E A M S T X
0 1 2 3 4 5 6 7 8 9 10

R
P E

O L E A

M S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

M P E O L E A R S T X
0 1 2 3 4 5 6 7 8 9 10

M

P E

O L E A

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

P M E O L E A R S T X
0 1 2 3 4 5 6 7 8 9 10

P
M E

O L E A

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

P O E M L E A R S T X
0 1 2 3 4 5 6 7 8 9 10

P
O E

M L E A

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

P O E M L E A R S T X
0 1 2 3 4 5 6 7 8 9 10

P
O E

M L E A

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

A O E M L E P R S T X
0 1 2 3 4 5 6 7 8 9 10

A
O E

M L E P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

O A E M L E P R S T X
0 1 2 3 4 5 6 7 8 9 10

O
A E

M L E P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

O M E A L E P R S T X
0 1 2 3 4 5 6 7 8 9 10

O
M E

A L E P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

O M E A L E P R S T X
0 1 2 3 4 5 6 7 8 9 10

O
M E

A L E P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E M E A L O P R S T X
0 1 2 3 4 5 6 7 8 9 10

E
M E

A L O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

M E E A L O P R S T X
0 1 2 3 4 5 6 7 8 9 10

M
E E

A L O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

M L E A E O P R S T X
0 1 2 3 4 5 6 7 8 9 10

M
L E

A E O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

M L E A E O P R S T X
0 1 2 3 4 5 6 7 8 9 10

M
L E

A E O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E L E A M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

E
L E

A M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

L E E A M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

L
E E

A M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

L E E A M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

L
E E

A M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

A E E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

A
E E

L M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E A E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

E
A E

L M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E A E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

E
A E

L M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E A E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

E
A E

L M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

E A E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

E
A E

L M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

A E E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

A
E E

L M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

A E E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

A
E E

L M O P

R S T X

Heapsort
Repeatedly delete the largest remaining item by swapping with
the last item.

A E E L M O P R S T X
0 1 2 3 4 5 6 7 8 9 10

A
E E

L M O P

R S T X

Merge sort
Sort the left half.

Sort the right half.

Merge the sorted halves.

Merge sort

Merge sort

sort the left half

Merge sort

sort the left half

sort the left half

Merge sort

sort the left half

sort the left half

sort

Merge sort

sort the left half

sort the left half

sorted

Merge sort

sort the left half

sort the left half

sortsorted

Merge sort

sort the left half

sort the left half

sortedsorted

Merge sort

sort the left half

sort the left half

merge

sortedsorted

Merge sort

sort the left half

sort the left half

merge

sortedsorted

Merge sort

sort the left half

sort the left half

merge

sortedsorted

Merge sort

sort the left half

sorted

Merge sort

sort the left half

sort the right halfsorted

Merge sort

sort the left half

sort the right half

sortsorted

Merge sort

sort the left half

sort the right half

sortsortedsorted

Merge sort

sort the left half

sort the right half

sortedsortedsorted

Merge sort

sort the left half

sort the right half

merge

sortedsortedsorted

Merge sort

sort the left half

sort the right half

merge

sortedsortedsorted

Merge sort

sort the left half

sort the right half

merge

sortedsortedsorted

Merge sort

sort the left half

sortedsorted

Merge sort

sort the left half

merge

sortedsorted

Merge sort

sort the left half

merge

sortedsorted

Merge sort

sort the left half

merge

sortedsorted

Merge sort

sort the left half

merge

sortedsorted

Merge sort

sort the left half

merge

sortedsorted

Merge sort

sorted

Merge sort

sort the right halfsorted

Merge sort

sort the right half

sorted sort the left half

Merge sort

sort the right half

sort the left half

sorted sort

Merge sort

sort the right half

sort the left half

sorted sortsorted

Merge sort

sort the right half

sort the left half

sorted sortedsorted

Merge sort

sort the right half

sort the left half

merge

sorted sortedsorted

Merge sort

sort the right half

sort the left half

merge

sorted sortedsorted

Merge sort

sort the right half

sort the left half

merge

sorted sortedsorted

Merge sort

sort the right half

sorted sorted

Merge sort

sort the right half

sorted sort the right halfsorted

Merge sort

sort the right half

sorted

sort the right half

sortsorted

Merge sort

sort the right half

sorted

sort the right half

sortedsorted

Merge sort

sort the right half

sorted

sort the right half

sortsortedsorted

Merge sort

sort the right half

sorted

sort the right half

sortedsortedsorted

Merge sort

sort the right half

sorted

sort the right half

merge

sortedsortedsorted

Merge sort

sort the right half

sorted

sort the right half

merge

sortedsortedsorted

Merge sort

sort the right half

sorted

sort the right half

merge

sortedsortedsorted

Merge sort

sort the right half

sorted sortedsorted

Merge sort

sort the right half

sorted

merge

sortedsorted

Merge sort

sort the right half

sorted

merge

sortedsorted

Merge sort

sort the right half

sorted

merge

sortedsorted

Merge sort

sort the right half

sorted

merge

sortedsorted

Merge sort

sort the right half

sorted

merge

sortedsorted

Merge sort

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

merge

sorted sorted

Merge sort

sorted

Quicksort

Partitioning
To partition an array A on element x = A[i] is to rearrange A[] so that:
• x moves to position j (may be the same as i)
• All entries to the left of x are ≤ x.
• All entries to the right of x are ≥ x.

Partitioning
To partition an array A on element x = A[i] is to rearrange A[] so that:
• x moves to position j (may be the same as i)
• All entries to the left of x are ≤ x.
• All entries to the right of x are ≥ x.

Which partitions are valid?

A. C.

B. D.

5 550 10 4 10 9 330

A[i] (pivot)

5 4 9 10 10 550 330

5 9 10 4 10 550 330

4 5 9 10 330 10 550

5 9 10 4 10 550 330

Quicksort
Partitioning puts pivot in the correct position.

Keep partitioning until all items become pivots.

For most common situations, it is empirically the fastest sort.

Partitioning
Put pivot at position 0
Create L and G pointers at left and right ends
L pointer is a friend to small items and hates large or equal items
G pointer is a friend to large items and hates small or equal items
Repeat until pointers cross:

Walk pointers toward each other stopping on hated items
When pointers have stopped, swap items and move pointers by one

Swap pivot and element pointed to by G

19 17 21 34 4 28 42 19 19

Partitioning
Put pivot at position 0
Create L and G pointers at left and right ends
L pointer is a friend to small items and hates large or equal items
G pointer is a friend to large items and hates small or equal items
Repeat until pointers cross:

Walk pointers toward each other stopping on hated items
When pointers have stopped, swap items and move pointers by one

Swap pivot and element pointed to by G

19 17 21 34 4 28 42 19 19

Partitioning
Put pivot at position 0
Create L and G pointers at left and right ends
L pointer is a friend to small items and hates large or equal items
G pointer is a friend to large items and hates small or equal items
Repeat until pointers cross:

Walk pointers toward each other stopping on hated items
When pointers have stopped, swap items and move pointers by one

Swap pivot and element pointed to by G

19 17 21 34 4 28 42 19 19

Pick the best sort
Suppose we do the following:
• Read 1,000,000 integers from a file into an array of length 1,000,000.
• Use merge sort to sort these integers.
• Randomly select one integer and change it.
• Sort using algorithm S of your choice.

Which sorting algorithm would be the fastest choice for S?
A. Selection sort
B. Heap sort
C. Merge sort
D. Insertion sort

Almost sorted arrays
For arrays that are almost sorted, insertion sort does very little work.

A B D E E C S Q X Y Z

A B D E E C S Q X Y Z

A B D E E C S Q X Y Z

A B D E E C S Q X Y Z

A B D E E C S Q X Y Z

A B D E E C S Q X Y Z

A B C D E E S Q X Y Z

A B C D E E S Q X Y Z

A B C D E E S Q X Y Z

A B C D E E S Q X Y Z

A B C D E E S Q X Y Z

A B C D E E S Q X Y Z

Find Sum
Given an integer sum and a sorted array numbers of N distinct
integers, implement a function to find if there exist indices 
i and j such that numbers[i] + numbers[j] == x.
bool findSum(const vector<int> &numbers, int sum) {
 for (int i = 0; i < numbers.size(); i += 1) {
 for (int j = 0; j < numbers.size(); j += 1) {
 if (numbers[i] + numbers[j] == sum) {
 return true;
 }
 }
 }
 return false;
}

Interview Question

Find Sum
Given an integer sum and a sorted array numbers of N distinct
integers, implement a function to find if there exist indices 
i and j such that numbers[i] + numbers[j] == x.
bool betterFindSum(const vector<int> &numbers, int sum);

Implement a better, more efficient version of the algorithm.

Interview Question

