Week 4: Monday

CECS 287

MAXIM ALEKSA maximal. 10


http://maximal.io

Roadmap

Mon 5/22  Quicksort Section: Sorting algorithms  Project 2 due

Tue 5/23 Mergesort

Wed 5/24 Midterm Exam review Section: Midterm Exam review

Thu5/25 Midterm Exam

Fri 5/26 Lab 4 and Lab 5 due

Tue 5/30 Intro to Hashing

Wed 5/31 Hashing and Collision Resolution Section: Hashing

Thu 6/1 Tree ADT, Searching in Trees




Agenda

Disjoint sets Sorting
Bubble sort
Queue with two stacks Insertion sort
Fibonaccilterator Selection sort
Merge sort
Searching Heapsort

Quicksort



slides



Queue with two stacks




Queue with two stacks




Queue with two stacks

Input output



Fibonacci [terator
Fn Fn_,‘ ‘|‘Fn ]



Disjoint sets

NO items are more than in one set
Universe of items: all items that can be a member of a set

Operations:
Union merges two sets into one
Find finds which set an item is in



Disjoint sets

=m Microsoft verizon

tumbilr:

NOKIA YAHOOQO!

‘ Linked in




Disjoint sets

~m Microsoft verizon

NOKIA YAHOOQO! tumblr.

~ Linked in




Disjoint sets

Microsoft SKype Tumblr Yahoo!
SiMicosoft  SKYPE  tumblr  YAHOO!
Nokia Verizon LinkedlIn
NOKIA verizon Linked in

find(Skype) - Skype
find(Tumblr) - Tumblr
find(LinkedIn) - LinkedIn



Disjoint sets

Microsoft Yahoo!
SiMicosoft  SKYPE  tumblr  YAHOO!
Nokia Verizon LinkedIn
NOKIA verizon Linked in

find(Skype) - Microsoft
find(Tumblr) - Yahoo!
find(LinkedIn) - LinkedIn



Disjoint sets

Microsoft Yahoo!

~= Microsoft tumbir: YAHOQ

LinkedIn Verizon

Linked in verizon

NOKIA

find(Skype) - Microsoft
find(Nokia) - Microsoft
find(LinkedIn) - LinkedIn



Disjoint sets

Microsoft Yahoo!

=H \icrosoft ~ tumblr. YAHOQ!

Verizon
NOKIA |inkedin verizon

find(Skype) - Microsoft
find(Nokia) - Microsoft
find(LinkedIn) - Microsoft



Disjoint sets

Microsoft Verizon

— = Microsoft ~ tumblr. YAHOO!
verizon
NOKIA | inkedin

find(Tumblr) - Verizon
find(Yahoo!) - Verizon
find(Verizon) - Verizon



Quick Fino

List-based disjoint sets
Fach set references list of items in that set

Fach item references the set that contains it
Microsoft

Find: ©(1) time /
Union: slow ‘ )
Linked in

NOKIA = Microsoft




Quick Find

List-based disjoint sets

Fach set references list of items in that set

Fach item references the set that contains it set

< Find: ©(1) time ¢ “_“‘

Union: slow LA/Eh abet),

Gocﬁi&ix

NOKIA Microsoft

_+Microsoft

g
i




Quick Union

Microsoft
Union: ©O(1) time == Microsoft
Find: slower /
Quick Union is faster overall than Quick Find *
Sets are stored as trees / Linked in
Only parent references NOIKA

True identity of each set is recorded at root



‘ : Y
QuickUnion g o

\/Union: O(1) time @OO?[Z KQ/“ Mlcrosoft
+h o
Find: slower O (0\3 d = aep Q /
o wL©

Quick Union is faster overall than Quick Find ‘M

Lmkedlm
Sets are stored as trees 9 .:5 @ %\ Q
Only parent references O NDKIA

True identity of each set is recorded at root betier:

sef
T TP e T T
VUN(ON BY Size AT each nodej /"C;)O%T\O

O
record\ ¢ of "h"QQ
Moke smaller tree subttiree of largerong /5) 3




QL“Ck UnlOn Microsoft

\ St .
Union: ©(1) time (D Union bb ¢ 7€ == Microsoft
Find: slower /

Quick Union is faster overall than Quick Find ~ :
Sets are stored as trees S~ o / Linked in

O
Only parent references O/ N O © NDKIA/’J?AJ)V\O

True identity of each set is recorded atroot 3 (O

approR . S 33€ - Aep !
yffodedf ) - wWan g




Disjoint Sets as an Array

0:\:* v § V'\\A-VV\b{('CO" 'CYOW\ Zer_ o
Arrcu.j Yo vecoran  pove nX of cach tem
+ TF o ‘oarewt- - vecord Size 0O neq. nombes

%

umon r~6\
/QQ |1 P& 1g1sT 8l 4] st 4]
@ 3@@

O " A 3 Y s 678 g
\/oéd union (int ffl.’iV\"r r93{

¥4 (O\L\‘Q:[ <alr1 J){ -
D O\EYQ\B A = q[r j_l\ < (Z\irhmg_’r{&
alrdl = v,

'g 36\3( ?



@ Wwnion \’3‘3 5t2e
D Path comypression

Optimizing

< 9,
AR . o N—
R _C(E;éﬁﬁ(uﬂ 3/ 42 3
U Y \
I
s 6 nF Lind (int A i 6, A
I\ € (alx] < O) §
? q 3 r{“H%rh X ) .
Q\Se W
Ty S L
X LR \Y
O (u +1C‘_M(F+u.,tﬂ> 2 feturn oo 9(1\
exdr slouws 9o "7

R
mue rse Ac kormann 'Fh 6\ ﬂ@\}.z_\( >L/ QVCS C






S0rting



S0rting

A sort is a permutation of a sequence of elements that brings
them into order according to some total order.

A total order < is

total x<yory=<xforallx,y.
reflexive X <x
antisymmetric x<yandy<xiffx=y.
transitive x<yandy=<zimpliesx <z



Alternative view point

An inversion is a pair of elements that are out of order.

01123486957

6/55 inversions: (8,6) (8,5) (8,7) (6,5) (9,5) (9,7).

Goal of sorting: reduce the number of inversions to 0.



Alternative view point

An inversion is a pair of elements that are out of order.

91123486957

6/55 inversions: (8,6) (8,5) (8,7) (6,5) (9,5) (9,7).

——
Goal of sorting: reduce the number of inversions to 0.






Whny sort?

Problems become easier
Searching

Finding median

Data compression

Computer graphics



Sorting Algorithms

Bubble sort
Selection sort
Insertion sort
Heapsort
Merge sort

Quicksort



Sorting Algorithms

Bubble sort
le matt
Selection sort cle S
| SorTs
INnsertion sort
Heapsort
Merge sort

Quicksort



Bubble sort

Reduce the number of inversions by going through the array
and swapping adjacent elements if they are an inversion pair.

Bubble large elements up and bubble small elements down.

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 .. n — 2:
if A[i] > A[i + 1]:
swap A[i] > A[i + 1]



Bubble sort

Reduce the number of inversions by going through the array
and swapping adjacent elements if they are an inversion pair.

Bubble large elements up and bubble small elements down.

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i] > A[i + 1]:
swap A[i] > A[i + 1]



Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

3
¥
N
M
3




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

3
¥
N
M
3




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

Q 7



Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

6 /




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

v
o

o
8

6 /




Bubble sort

Repeat until A is sorted (no swaps in previous loop):

for 1 =0 ... n — 2:
6 /

if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

3
7
o

o
8

v
A
®



Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

o
8

6 /

v
o
®



Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

o
8

6 /

v
o
®



Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

o
8

6 /

v
o
®



Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

6 /




Bubble sort

Repeat until A is sorted (no swaps in previous loop):

for 1 =0 ... n — 2:
6 /

if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

3
7
o




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

6 /




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

6 /




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

6 /




Bubble sort

Repeat until A is sorted (no swaps in previous loop):

for 1 =0 ... n — 2:
6 /

if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

3
7
o




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

6 /




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]




Bubble sort

Repeat until A is sorted (no swaps in previous loop):

for 1 =0 ... n — 2:
6 /

if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

3
7
o




Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

T A"
v
A A

o
G

3

6 /

2



Bubble sort

Repeat until A is sorted (no swaps in previous loop):
for 1 =0 ... n — 2:
if A[i]l > A[i + 1]:
swap A[i] > A[i + 1]

6 /



Selection sort

Find the smallest item in the unsorted part.
Swap this item to the front and "fix”it.

Repeat for unfixed items until all items are fixed.

3
¥
N
M
3




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

SO ¥ &
v
A M A
0 1 3

unsorted

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

SO ¥ &
v
A M A
0 1 3

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

_
;
'M
1 3

minimum

T A"
v

A M
0

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

SO ¥ &
v
A M A
0 1 3

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T A"
v
A M
0 1 3

Mminimum

o
o

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Mminimum

2 4 ® 6 /

<




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Mminimum

T A" "
v
A M A
0 1 3

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Mminimum

T A" "
v
A M A
0 1 3

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.
minimum -
/

T A" "
v
A M A
0 1 3

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Mminimum

T A" "
v
A M A
0 1 3

N



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

)
v
C A A

1 2 3

ol » € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Sl
v
: A A

1 2 3

el > € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Sl
v
: A A

1 2 3




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Sl
v
: A A

1 2 3

el > € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

_ minimun _

Sl
v
: A A

1 2 3

el > € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Sl
v
: A A

1 2 3

el > € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Sl
v
: A A

1 2 3

el > € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

3

Sl
v
: A A

1 2 3

el > € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

Sl
v
: A A

1 2 3

el > € <€



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

T
v
A N A
2 3 6 /

v
o
®



Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Selection sort

Select the smallest item in the unsorted part.
Swap it to the front of the unsorted part to put it in correct position.
Repeat for all unsorted items until all items are in the sorted part.

6 /




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the

correct position.
/

Do everything in place using swapping.

SO ¥ &
v
A M A
0 1 3

unsorted

N



Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

SO ¥ &
v
A M A
3

0




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

SO ¥ &
v
A M A
3

0




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

DO everything iNn place using swappina.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted

MM
6 /

v
o
®



Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted

v
o
:
® 6 /




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

unsorted

v
o
:
® 6 /




Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

T A"
v
A N
2 3

unsorted

MM
6 /

v
o
®



Nsertion sort

Add each item from unsorted input, inserting into sorted output at the
correct position.

Do everything in place using swapping.

T A"
v
A N
2 3

unsorted

MM
6 /

v
o
®



Nsertion sort

Add each item from unsorted input, inserting into sorted output at the

correct position.
6 /

Do everything in place using swapping.

T A"
v
A N
2 3

A
8

v
o
®



Nsertion sort

Add each item from unsorted input, inserting into sorted output at the

correct position.
6 /

Do everything in place using swapping.

T A"
v
A N
2 3

A
8

v
o
®



—eapsort

Build a max-heap using bottom-up method.

HUOMOHODEOD



—eapsort

Build a max-heap using bottom-up method.

HREUELOLGDE



—eapsort

Build a max-heap using bottom-up method.

STOTRITTE

0 5 6 /7 8 9 10




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Build a max-heap using bottom-up method.




—eapsort

Repeatedly delete the largest remaining item by swapping witn
the last item.

HUBRALONEGS

OO0 (A&
M © © E



—eapsort

Repeatedly delete the largest remaining item by swapping witn
the last item.

_MBEAOONEED

OO0 (A&
M © © E



—eapsort

Repeatedly delete the largest remaining item by swapping witn
the last item.

T|s|PIL]R]AIM]OJE
o 1 2 3 4 5 6 7 8 9 10

M) © E® @




—eapsort

Repeatedly delete the largest remaining item by swapping witn
the last item.

S|PIL[R[AIM|OJE
o 1 2 3 46 /8 9 10
O
OO0 (A
ONOXOX




—eapsort

Repeatedly delete the largest remaining item by swapping witn
the last item.

TIP|SELIRIA[MOJE
o 1 2 3 4 5 6 7 8 9 10

v ® (A&
M) © E® @




—eapsort

Repeatedly delete the largest remaining item by swapping witn
the last item.

T|P|S|OJLIRIAIM
O 1 2 3 4 6 /7 8 9 10
(P O
OO0 (A

ON JXOX °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

PIS[OJL|RIAIMIE]E
o 1 2 3 4 5 6 7 8 9 10

ONOIOX




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

PTSOTL[RIA N

0 9 10

OpGx X °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

S|PROJLIRIAIMIE

o 1 2 3 46 /8 9 10
(P

OO0 (A

OROX X °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

S|PIR[OJL
O 1 2 3 4 6 /7 8 9 10

(P (R
OO

OpGx X °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

PIOTLETA W

0 9 10

OpGx X °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

PO e

0 8 9 10

O X X °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

RIPEOILIEIAIM

o 1 2 3 46 /8 9 10
(P

o O ¢ (A

Of X X °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

PEONERw

0 8 9 10

O X X °




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

PEOTIETE

0 /8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

G _Hunoo

0 1 /8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

POl MLTET

0

/8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

SR

0 /8 9 10

O &
OO0 (A&




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

ST

0 6 /7 8 9 10

O &
OO0 ®)




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

O Guno

0 1 6 /7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

oTTE e

0

6 /7 8 9 10

©
(M) &




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2 3 4 5

0 6 /7 8 9 10

(M) &
OO0 ®)




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2 3 4

0 5 6 /7 8 9 10

(M) O
OO




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

2 3 4 5

0 1 6 /7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

o 1 2 3 46 /8 9 10
(L &
(A
® OO




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2 3 4

0 5 6 /7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2 3

0 4 5 6 7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2 3 4 5

0 6 /7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2 3

0 4 5 6 7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2 3 4 5

0 6 /7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

T 2

0

3 4 5 6 /7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

o 1 2 3 4 5 6 7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

o 1 2 3 4 5 6 7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

o 1 2 3 4 5 6 7 8 9 10




—eapsort

Repeatedly delete the largest remaining item by swapping with
the last item.

V) i O Max HMF -Q

® ;

4TS

’ . ‘ ~ waxtleapify ©)
OO®O® - -« g




Merge sort

Sort the left half.
Sort the right half.
Merge the sorted halves.




Merge sort

A
14 m

‘v 9
A A

N
@ m

v
v
o

m |
v
o
G

Y@
v
A A



Merge sort

N
@

3
v

v
A A

L

sort the left half



Merge sort

Y ¥ v
4
LI Y. A

sort the left half
sort the left half

> € <€




Merge sort

Y v
v
A A A

sort
sort the left half
sort the left half

> € <€




Merge sort

Y v
v
A A A

sorted
sort the left half
sort the left half

> € <€




Merge sort

Y v
v
A A A

sorted sort
sort the left half
sort the left half

> € <€




Merge sort

Y v
v
A A A

sorted sorted
sort the left half
sort the left half

> € <€




Merge sort

Y v
v
A A A

sorted sorted

> € <€

merge
sort the left half
sort the left half



Merge sort

v
N
@

sorted sorted

> € <€

"
v

A M
merge
sort the left half
sort the left half



Merge sort

| HE

sorted sorted

"
v
A M

merge
sort the left half
sort the left half

> € <€




Merge sort

m M
v
N
@

> € <€

Y@
v
o

sorted
sort the left half




Merge sort

Y ¥ v
v
h N ¢

sorted sort the right half
sort the left half

> € <€




Merge sort

T 2
v v
LI Y. LI

sorted sort
sort the right half
sort the left half




Merge sort

T 2
v v
LI Y. LI

sorted sorted sort
sort the right half
sort the left half




Merge sort

T 2
v v
LI Y. LI

sorted sorted sorted
sort the right half
sort the left half




Merge sort

T 2
v v
LI Y. LI

sorted sorted sorted

merge
sort the right half
sort the left half



Merge sort

Y@
v
LI Y.

sorted sorted sorted

3
v

A

o
merge

sort the right half
sort the left half




Merge sort

Y@
v
LI Y.

sorted sorted sorted

M
v

N

@

merge
sort the right half
sort the left half

> € <€



I\/\erge SOrt

m

sorted sorted
sort the left half




I\/\erge SOrt

'

sorted sorted

merge
sort the left half



Merge sort

Y@
v
LI Y.

sorted sorted

merge
sort the left half



Merge sort

B

sorted sorted

" T
v v
LI LY

merge
sort the left half




Merge sort

BN

sorted sorted
v v BRe v

v v

LI LY

merge
sort the left half



Merge sort

L L

sorted sorted
v v By v
v v
LI LY
merge

sort the left half



Merge sort

" T
v v
I ALY

sorted




Merge sort

" T
v v
I ALY

!
sorted sort the right half



Merge sort

" T
v v
I ALY

sorted sort the left half
sort the right half




Merge sort

" T
v v
I ALY

sorted sort
sort the left half
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sort
sort the left half
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sorted
sort the left half
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sorted

N
8

merge
sort the left half
sort the right half



Merge sort

v v By v
v v
I ALY A

sorted sorted sorted

merge
sort the left half
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted sorted

merge
sort the left half
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sort the right half
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted

sort the right half
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted sorted
sort the right half
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sorted sort
sort the right half
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sorted sorted
sort the right half
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sorted sorted

merge
sort the right half
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted sorted sorted

merge
sort the right half
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted sorted sorted

merge
sort the right half
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted sorted
sort the right half




Merge sort

" T
v v
I ALY

sorted sorted sorted

merge
sort the right half



Merge sort

" T
v v
I ALY

sorted

sorted

merge
sort the right half



Merge sort

" T
v v
I ALY

sorted

sorted

merge
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted sorted

merge
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted sorted

N
8 m

merge
sort the right half



Merge sort

" T
v v
I ALY

sorted sorted

v vy IR




Merge sort

v v ERY ¥ v v Il :
v v
v v
0
A A N A A A

sorted sorted

o
L

merge



Merge sort

T ‘v‘vvzv .
v A
A A A A : :

sorted sorted

merge



Merge sort

T I Z'
v
LI Y.

sorted sorted

s KT

v
£
:

> € <€

merge



Merge sort

LI [ B

sorted sorted

€ ‘v vl v
v
d LY EELY

> € <€

merge



Merge sort

‘v vyIl'Y ¥
v v

vy v V‘V

O ALK M

sorted sorted

€ ‘v vl v
v
d LY EELY

merge

> € <€




Merge sort

BN I

sorted sorted

m
v
v

d LY EELY

merge

> € <€




Merge sort

M

sorted sorted

m
v
v

d LY EELY

merge

> € <€




Merge sort

BN REpENN

sorted sorted

v
£
:

> € <€

m
v
v

d LY EELY

merge




Merge sort

LLUE Do

sorted sorted

v v
v
0
T Y KXY :

merge

> € <€




Merge sort

"
v
LI

‘v vy IlRe v {
v
v
A Al A A

sorted



Merge sort

v My v v v Zv'
v v v
O A A A A A A

sorted

E
4
&

o
MM

T = AT(R) + On)
S O (n f03 m}




Quicksort



Partitioning

To partition an array A on element S tO rearrange SO that:
- X moves to position j (may be the same as i)

- All entries to the left of x are = x.

- All entries to the right of x are = x.



Partitioning

To partition an array A on element S tO rearrange SO that:
- X moves to position j (may be the same as i)
- All entries to the left of x are = x.

- All entries to the right of x are = x. n

Which partitions are valid?
A [4]5 ]9 [10]3s0]10(ss0] ¢ | 5|4 |9 |10]10]550]330
3. | 5 ]9 |10]4 [H0fsso[330] b |59 |10] 4 ][10]550]330




Partitioning

To partition an array A on element .| is to rearrange SO that:
- X moves to position j (may be the same as i)
- All entries to the left of x are = x.

- All entries to the right of x are = x. m-n
4

4 30

Which partitions are valid? \/
/S I N I 1 I B A I I ) R EE3EED
e [3]2 [0« ssofe] o, [5 o 0] « [10[ss0f0
—_—




Quicksort

Partitioning puts pivot in the correct position.
Keep partitioning until all items become pivots.

For most common situations, it is empirically the fastest sort.



Quicksort

Partitioning puts pivot in the correct position.
Keep partitioning until all items become pivots.

For most common situations, it is empirically the fastest sort.

L 7 o
S
— A R
| Sert S
""_é—( _ QCU’L(-LO y \> Fot('*;'f.‘aq



Partitioning

Put pivot at position 0
Create L and G pointers at left and right ends
L pointer is a friend to small items and hates large or equal items

G pointer is a friend to large items and hates small or equal items

Repeat until pointers cross:
Walk pointers toward each other stopping on hated items

When pointers have stopped, swap items and move pointers by one
Swap pivot and element pointed to by G




Partitioning O lw) we

Put pivot at position 0
Create L and G pointers at left and right ends
L pointer is a friend to small items and hates large or equal items

G pointer is a friend to large items and hates small or equal items

Repeat until pointers cross:
Walk pointers toward each other stopping on hated items

When pointers have stopped, swap items and move pointers by one
Swap pivot and element pointed to by G

i P A = [a e e]
A [0)




O (rime

Partitioning )
O

Put pivot at position 0
Create L and G pointers at left and right ends
L pointer is a friend to small items and hates large or equal items

G pointer is a friend to large items and hates small or equal items

Repeat until pointers cross:
Walk pointers toward each other stopping on hated items

When pointers have stopped, swap items and move pointers by one
Swap pivot and element pointed to by G

PV e e L%’V/ L gH & &6

T ERE el
@ | 9

g




Pick the best sort

Suppose we do the following:

- Read 1,000,000 integers from a file into an array of length 1,000,000.
- Use merge sort to sort these integers.

- Randomly select one integer and change it.

- Sort using algorithm S of your choice.

Which sorting algorithm would be the fastest choice for S?
A. Selection sort

B. Heap sort
C. Merge sort
D. Insertion sort




Almost sorted arrays

For arrays that are almost sorted, insertion sort does very little work,

N N N NN NINNNNINNN

= > > > > > > > > > > >

X X X X X X X X X X X X
OO0 000000 00O 0

Vp)

A B D E E C

V)

A B D E E C

V)

A B D E E C

V)

A B D E E C

V)

A B D E E C

V)

A B D E E C

V)

A B C D E E

wn

A B C D E E

V)

A B C D E E

V)

A B C D E E

V)

A B C D E E

V)

A B C D E E



|:| n d S u m Interview Question

Given an integer sum and a sorted array numbers of N distinct
integers, implement a function to find if there exist indices

1 and j such that numbers[i] + numbers[j] == x.

findSum( <int> &numbers, sum) {
( i =0; 1 < numbers. (); i += 1) {
( j = 0; j < numbers. (); §j += 1) {
(numbers[i] + numbers[j] == sum) {

n
’



Find Sum  Interview Question

Given an integer sum and a sorted array numbers of N distinct
integers, implement a function to find if there exist indices

1 and j such that numbers[i] + numbers[j] == x.

hool betterFindSum(const vector<int> &numbers, nt sum);

Implement a better, more efficient version of the algorithm.



