
EECS 281, Week 2: Monday
Hi again! Slides, code examples at maximal.io/eecs183 ! Notes at datastructures.maximal.io.

Binomial coefficient
Recall that the binomial coefficient can be written as � � .

Implement binomial, a function that computes the Binomial coefficient of n and k.

Asymptotics

Order from most to least efficient:

� � � � � � �
� � � � �

� ⊂ � ⊂ � ⊂ � ⊂ � ⊂ � ⊂ � ⊂ 

� ⊂ � ⊂ � ⊂ � ⊂ � .  

(n
k) = n!

k !(n − k)!
= (n − 1

k − 1) + (n − 1
k)

uint64_t binomial(int n, int k) {
 if (k > n) {
 return 0;
 } else if (k == 0 || n == k) {
 return 1;
 } else {
 return binomial(n - 1, k - 1) + binomial(n - 1, k);
 }

}

Name Big O Big Omega Big Theta

Notation

Informal meaning

Example family

Family members

Order of growth
is greater than or equal to

�f (n)

Order of growth
is less than or equal to

�f (n)

�
�

�

N2

2
2N2 + 1

eN

�f (n) ∈ Ω ((n))

�Θ(N2)�O (N2)

Order of growth
is equal to

�f (n)

�
�

�

N2

2
2N2 + 1

N2 + 183N + 5

�
�
�

N2

2
2N2 + 1
log(N)

�f (n) ∈ Θ ((n))�f (n) ∈ O ((n))

�Ω(N2)

O(n) O(n!) O(nn) O(n2) O(2n) O(log n) O(1)
O (n) O(n3) O(n2 log n) O(3n) O(n log n)

O(1) O(log n) O (n) O(n) O(n log n) O(n2) O(n2 log n)

O(n3) O(2n) O(3n) O(n!) O(nn)

Maxim Aleksa (maximal@umich.edu) 0 < �8 http://maximal.io/eecs281

EECS 281, Week 2: Monday
Analysis of Algorithms (1)
Let R(N) be the runtime of this code as a function of N, where N is the size of the array.

What is the order of growth of R(N)? depends on the input ________________ ______________

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)) in the worst case. N2 ________ ________

Best case vs. Worst case

Best case: describes the performance of an algorithm under optimal conditions.aaa  
 defined by the minimum number of steps taken on any instance of size n.

Average case: defined by the average number of steps taken on any instance of size n.

Worst case: defined by the maximum number of steps taken on any instance of size n.

Always: describes the performance of an algorithm that does not depend on the input.

Analysis of Algorithms (2)
Assume that mysteryFunc executes in constant time and returns a value of type int.

Give the worst-case and best-case runtime in terms of N and M.

Worst-case: � Best-case: � _________ _________ ______________ ______________
j is only initialized outside of the outer for loop. 

bool hasDuplicates(const int numbers[], int size) {
 for (int i = 0; i < size; i += 1) {
 for (int j = i + 1; j < size; j += 1) {
 if (numbers[i] == numbers[j]) {
 return true;
 }
 }
 }
 return false;
}

int j = 0;
for (int i = N; i > 0; i -= 1) {
 for (; j < M; j += 1) {
 if (mysteryFunc(i, j) > 0) {
 break;
 }
 }
}

Θ(N + M) Θ(N)

Maxim Aleksa (maximal@umich.edu) 1 < �8 http://maximal.io/eecs281

EECS 281, Week 2: Monday
Analysis of Algorithms (3)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)). N _________________ ________________

Formulas

Sum of first N numbers: 1 + 2 + 3 + 4 + … + N = N(N + 1) / 2 ∈ ϴ(N2) ______________

Sum of the powers of 2 up to N: 1 + 2 + 4 + 8 + … + N = 2N – 1 ∈ ϴ(N) ___________________

Asymptotics
True or false? If � and � are positive-valued functions, then � .

False. Let � and � , then � .

True or false? If � and � are positive-valued functions, then � .

True.

Analysis of Algorithms (4) / Recursion

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)). 2N _________________ _______________
An easy way is to construct a recurrence relation, � , which we can solve with
the substitution method.  

void printHello(int n) {
 for (int i = 1; i <= n; i *= 2) {
 for (int j = 0; j < i; j += 1) {
 cout << "hello" << endl;
 }
 }
}

f (n) ∈ O(n2) g(n) ∈ O(n) f (n)
g(n) ∈ O(n)

f (n) = n2 g(n) = 1
n

f (n)
g(n) = n3

f (n) ∈ Θ(n2) g(n) ∈ Θ(n) f (n)
g(n) ∈ Θ(n)

int recursive(int n) {
 if (n <= 1) {
 return 1;
 }
 return recursive(n - 1) + recursive(n - 1);
}

T (n) = 2T (n − 1) + 1

Maxim Aleksa (maximal@umich.edu) 2 < �8 http://maximal.io/eecs281

EECS 281, Week 2: Monday
Recurrence Relations
There are three main ways to solve recurrence relations:

1. Substitution Method

2. Recursion Tree Method

3. Master Theorem

Substitution Method
Steps:
1. Guess the form of the solution
2. Verify by induction
3. Solve for constants
�
�
We can guess that the solution will be � , since on each step �, we do � units of work
twice. We will try to prove that � (we include � in anticipation of having to deal
with � in the recurrence relation).
Now, we prove � by induction.

Base case: � . � . This is true for any � .

Inductive step: we assume the property is true for � ; we need to show that it is true for �.

�

This is true for any � .

We can choose any constants � and � that satisfy � and � , such as � and � .

Therefore, we have proved that the property is true and that � .  

T (1) = 1
T (n) = 2T (n − 1) + 1

O(2n) n n − 1
T (n) ≤ k 2n − b b

+1
T (n) ≤ k 2n − b

n = 1 T (1) = 1 ≤ k 21 − b = 2k − b k ≥ b + 1
2

n − 1 n
T (n) = 2T (n − 1) + 1

≤ 2(k 2n−1 − b) + 1
= k 2n − 2b + 1
≤ k 2n − b

b ≥ 1

b k b ≥ 1 k ≥ b + 1
2 b = 1 k = 1

T (n) ∈ O(2n)

Maxim Aleksa (maximal@umich.edu) 3 < �8 http://maximal.io/eecs281

EECS 281, Week 2: Monday
Recursion Tree Method
�  T (n) = T (n

4) + T (n
2) + n2

Maxim Aleksa (maximal@umich.edu) 4 < �8 http://maximal.io/eecs281

EECS 281, Week 2: Monday
Master Theorem
Solve recurrences of the form _________� _________ where � , �  
and � is asymptotically positive. If � , then

�

�

�

�

�

T (n) = aT (n
b) + f (n) a ≥ 1 b > 1

f f (n) ∈ O(nc)

T(n) ∈
Θ (nlogb a), if a > bc

Θ (nc log n), if a = bc

Θ (nc), if a < bc

T(n) = 4T (n
2) + n

T(n) = 4T (n
2) + n2

T(n) = 4T (n
2) + n3

T(n) = 4T (n
2) + n2

log n

Maxim Aleksa (maximal@umich.edu) 5 < �8 http://maximal.io/eecs281

EECS 281, Week 2: Monday
Improving Sorting
Assume that mysteryFunc executes in constant time and returns a value of type int.

What is the growth complexity of this algorithm? O(N2) _________________ _________________

How can we improve this algorithm? 

Algorithm sort0(a[], N):
for i=2 to N
 j=i
 while (j > 1) and (a[j - 1] > a[j])
 swap a[j] and a[j - 1]
 --j

Maxim Aleksa (maximal@umich.edu) 6 < �8 http://maximal.io/eecs281

EECS 281, Week 2: Monday
Merge
Implement merge, a function that combines the elements of two sorted vectors into a single
vector and returns the result. For example, if a contains {1, 2, 4} and b contains {2, 3, 5},
merge should return a vector containing {1, 2, 2, 3, 4, 5}.

When finished, take a picture of your code and email it to Maxim.

vector<int> merge(const vector<int> &a, const vector<int> &b) {

}

Maxim Aleksa (maximal@umich.edu) 7 < �8 http://maximal.io/eecs281

